Working Effectively With Legacy Code

Michad Feathers
Object Mentor, Inc.
mfeathers@obj ectmentor.com

Last Change: April 9, 2002

Over the past fifteen years, much has been written about object oriented design and team
development processes. The unfortunate thing is that much design and process advice
assumes that your project is a blank page. In actudity, greenfield projects are noticably
rare. Mogt projects carry some amount of legacy code. In many new deveopment
efforts, the amount of legacy code will overwhem the amount of new code by factors of
100 to 1, or 1000 to 1. Needless to say, you can't work very fast with a legacy code base.
Work is often much dower, but you can speed it up if you establish a dtrategy to ded
with your exiging code and mitigate risk as new development goes forward. In this
paper, Il outline a drategy that can be used to work with legacy code. But first let's
establish some background.

What is Legacy Code?

A few years ago, | asked a friend how his new dlient was doing. He sad "they're writing
legacy code™ | knew what he was saying immediately, and the idea hit me like a ton of
bricks. After dl, there is an emationdly neutra definition of "legacy code” Legacy
code is code from the past, maintained because it works. But, for people who ded with it
day in and day out "legacy code' is a pandoras box: deepless nights and anxious days
poring through bad dructure, code that works in some incomprehensble way, days
adding features with no way of estimating how long it will take. The age of the code has
nothing to do with it. People are writing legacy code right now, maybe on your project.

The main thing tha digtinguishes legacy code from nonlegacy code is tests, or rather a
lack of tests. We can get a sense of this with a little thought experiment: how easy would
it be to modify your code base if it could bite back, if it could tel you when you made a
mistake? It would be pretty easy, wouldn't it? Mog of the fear involved in making
changes to large code bases is fear of introducing subtle bugs, fear of changing things
inadvertently. With teds, you can make things better with impunity. To me, the
difference is o criticd, it overwhdms any other didinction. With tests, you can make
things better. Without them, you just don't know whether things are getting better or
worse.

Copyright © 2002, Michael Feathers, All Rights Reserved lof 12

The key to working effectivdly with legacy code is getting it to a place where it is
possible to know that you are making changes one at a time. When you can do that, you
can nibble avay a uncertainty incrementally. The tedts that you use to do this are a hit
different from traditiond tests. | liketo cal them test coverings.

Test Coverings

A "test covering" § a set of tests used to introduce an invariant on a code base. These
tess are a bit different from the ones that are most often talked about in Extreme
Programming. For one thing, they tend to cover the behavior of a set of classes rather
than just a class and its immediate collaborators. For another, they tend to cover some
andl aea of a sytem just wdl enough to provide some "invariant" that lets us know
when we' ve changed the behavior of our sysem. The key thing is that correct behavior
is defined by what the sat of classes did yesterday, not by any externd sandard of
correctness.

In a desgn driven from the beginning usng tedts, the tests serve a couple of purposes.
They seed the design, they record the intentions of the designers, and hey act as a large
invariant on the code. In legacy code, it would be great to have tests which do al three
for us, but nothing is free. We can produce the most value working backwards: build the
invariant firg, then refactor to make the code clear. If we discover that the results from
our test covering are not wha the system should caculate, we can ded with that as a
separde issue. The primary god is to get that invariant before refactoring or adding new
behavior.

Your gpproach to test coverings can vary quite a bit depending upon whether your system
is in production or not. Systems that are dready deployed often require far more diligent
covering because the cost of errors is dgnificantly higher. Typicdly, there are users
who've grown to depend upon the current behavior of the sysem. On the other hand, if a
system has never been deployed and there is quite a bit of legacy code, i.e, code without
tests, you can often refactor with reative impunity, bringing things under test as you go.
It is quite literdly the case that no one "knows' whether the code is correct or not. The
number of bugs that you introduce by doing some initid refactoring without a strong test
covering, may be margind compared to the number of bugs that youll discover as you
bring code under test. Essentidly, you have to make a judgement cdl about how much
risk you are willing to assume as you bring the system under test.

Now, let’ s talk about how to move forward.

Legacy Management Strategy

By itsdf, legacy code doesn't hurt anything. As long as it works, it only becomes painful
when you have to make modifications. Fortunady, the firs steps you have to take to
work effectively with legacy code dso make it easer to clean things up.

Copyright © 2002, Michael Feathers, All Rights Reserved 20f 12

The generd legacy management srategy is.

o

|dentify change points

2. Fnd aninflection point

3. Cover theinflection point
a. Bresk externd dependencies
b. Break internd dependencies
c. Writetests

4. Make changes

5. Refactor the covered code.

Identify Change Points

When you have to make a change to legacy code, the first step is to figure where the
changes will need to be made. There redly isnt much to say about this except that the
amount of work involved varies with the degree of sckness in the code. Some changes
may require a lot of work in different areas of the sysem. However, if there are multiple
ways of making the changes, and you do not yet have test coverings in place, there are
dividends for choosing the way which requires the fewest changes. In other words, the
"right" way to add a change may not be the best initid choice. Why would this be? For
the most part it is because bringing large areas of code under coverage can take an
incredible amount of time. Fortunately, once you bring an area of code under te, it is
easer to ded with the next time. Over time, the “idands’ of coverage tha you cregte in
your code base will merge and you can refactor the classesin them to consolidate further.

Find an Inflection Point

After you've found the places in the code that you need to change, the next thing you
need to do is find an inflection point. An inflection point is a narow interface to a st of
clases. If anyone changes any of the classes behind an inflection point, the change is
either detectable at the inflection point, or inconsequentid in the gpplication.

Let's use a variation of the video store example that Martin Fowler developed in his book
Refactoring [1]. We would like to make changes to the way that videos are priced.
Cusgtomer is an inflection point for Rental, Movie, Pricer, and al of ther subclasses. It is
an inflection point, because there is no way that any behaviord change in Rentd, Pricer,
and Movie or any of ther subclasses can change the behavior of the gpplication without
going through it. More specificdly, the rest of the system recelves date changes through
methods on Customer. If we have comprehensve enough tests at the Customer leved, we
can be reasonably certain that we are not changing other things when we refactor or add
things behind the inflection point.

Copyright © 2002, Michael Feathers, All Rights Reserved 3of 12

CustomerView

1
Customer Rental Movie
T 1
Customer .
Report ——— MonthlyReport NonTaxedRental Pricer
NewReleasePricer DefaultPricer lf<—

Let's imagine another scenario. Suppose that we introduce a class named Inventory
which maintains a collection of dl the moviesin the system and prints a report.

Inve ntory

+ printReport
CustomerView

*
*
1
Customer Rental Movie
T 1
Customer .

Report ——— MonthlyReport NonTaxedRental Pricer

NewReleasePricer DefaultPricer <—

Once weve done that, Customer is gill an inflection point for Rental, but not for Pricers
or Movies. Any change that we make to Rentd must go through Customer to be
effective in the system. But, if we dart to make changes to Pricer, those changes could
be propagated to the rest of the system via Inventory as well as Customer.

Copyright © 2002, Michael Feathers, All Rights Reserved 40f 12

Inflection points are not soldy determined by physicd dependency, but rather by the way
that effects are propagated at run time in software. To see this, imagine that Customer
did not have any methods which returned values. The dependency picture above would
be the same even though CustomerMonthlyReport and CustomerView would have to get
information about the customer in some other way.

When you try to find inflection points, move outward from the places you are going to
change the software. Look for a narrow interface. It could be one class or severd. As
well, it is important not to depend on preexisting UML diagrams as you do this.
Diagramsrarely show dl of the users of particular classes.

Cover Inflection Point

Covering an inflection point involves writing a tests for it. The hard part of this is getting
your legacy code to compile in atest harness. Y ou often have to break dependencies.

In the case of the little example system above, wed like to get a Customer object in a
harness so that we can write some tests which cover its functiondity. The easest thing is
to just try to create a new ingtance of the class. At that point, well discover what we need
to provide it to get it to work properly. There are two types of dependencies which we
will run into immediately: externd dependencies and internd dependencies. Externd
dependencies are objects which we have to provide to setup the object we are creating.
Often they are condgtructor parameters, or objects which we have to set a the object's
interface. In the case of Customer, it seems that we will have to provide a CusomerView
object when we create it, but do we redly?

Breaking External Dependencies

Objects tak to other objects to get work done. This can be pretty distressing if you want
to separate out a cluster of objects to make a test covering. Fortunately, you can easly
sever the connection between any two objects. This is known as dependency inversion,
and hereishow you do it:

class CustomerView

{
private Customer _custome;
public void setCustomer (Customer customer) {
_customer = custome;
}
public void update() {
nameWidget.setText(_customer.getName());
}
}

Copyright © 2002, Michael Feathers, All Rights Reserved 50f 12

class Customer

{
public Customer(CustomerView view) {
_view = view;
_view.setCustomer(this);
}
}

As we can see, Customer objects have a direct dependency on CustomerViews. We need
a customer view whenever we create a customer. Actudly, the Stuation is far worse than
that. We need a customer view and we aso need everything that a customer view needs,
trangtively. If customer view has a nontrivid sgtup, we could spend hours hunting
through chains of references, finding more thing to create just so that our tests will be
ableto run.

The problem is that Customer depends on a concrete class, worse it is one we don't even
care about when testing. For our test covering, we are just interested in providing values
to customer objects and asking for results through the customer interface.

We can bregk the dependency by changing CustomerView into an interface and renaming
the origind dass:

interface CustomerView
{
void setCustomer(Customer custome);
void update();
}
class StandardCustomerView implements CustomerView
{
private Customer _custome;
public void setCustomer (Customer customer) {
_customer = custome;
}
public void update() {
nameWidget.setText(_customer.getName());
}
}

Copyright © 2002, Michael Feathers, All Rights Reserved 6of 12

class Customer

{
public Customer(CustomerView view) {
_view = view;
_view.setCustomer(this);
}
}

Now, we can cregte a customer object in our test without much trouble:

Customer customer = new Customer(new CustomerView () {
public void setCustomer(Customer customer) {}

public void update() {}
1

The bodies of the methods are empty because we just don't care what happens to the view
as we test through a Customer object.

Breaking Internal Dependencies

Internad dependencies are a little trickier to ded with. When the class we want to cover
cregtes its own objects internaly, sometimes the best thing that you can do is subclass to
override the creations.

Imagine that customer cregtes an archiver that records actions teken againg its interface.
We want to put Customer under test, but we don't want to have a dependency on the
Archiver class. Archiving is a red peformance hit and our tests would run abysmdly
dow if wedidit. Unfortunately, Customers create archivers in the constructor:

class Customer

{

private Archiver _archiver;
public Customer(CustomerView view) {

archiver = new FileArchiver(customerPersstenceName);

Copyright © 2002, Michael Feathers, All Rights Reserved 7of 12

One way around this is to extract the crestion of the archiver. We can create a method
named makeArchiver and add it to the customer class:

class Customer
{
private Archiver archiver;

public Customer(CustomerView view) {

ér'chiver = makeArchiver();

}
protected Archiver makeArchiver() {

return new FileArchiver(customerPers stenceName);
}

Now, to create a customer in our test, we can do this;

class TestingCustomer extends Customer
{
protected Archiver makeArchiver() {
return new Null Archiver();
}

}

Customer customer = new TestingCustomer(new CustomerView () {
public void setCustomer(Customer customer) {}
public void update() {}

1);

Here weve introduced a new class TedingCustomer which just overides the
makeArchiver method. When we create a TestingCustomer, we can be sure that we
having something which behaves like the Customer in our tests, but with one tiny
difference; it doesnt use a red archiver. We can use it to test everything past the
inflection point.

The makeArchiver method in TestingCustomer is a bit specid too. It crestes a
NullArchiver. All NullArchiver is, is a dass which implements the Archiver interface

Copyright © 2002, Michael Feathers, All Rights Reserved 8of 12

and provides bodies that dont actudly do anything. We could creste a
NullCustomerView class dso so that we don't have to create an anonymous inner class
when we test:

Customer customer = new TestingCustomer(new NullCustomerView ());

Generdly, | creste Null classes whenever | end up duplicating code in anonymous inner
clases. They can be very handy as you move forward in testing. If you need to talor a
few methods for use in a paticular test, you can override only those methods, assured
that the rest do nothing.

If you are tempted to use this drategy in C++, be leery of the fact tha when you cdl a
virtua function in a base class condructor, the method that is executed is the one in the
base class, not the one you've overridden in the derived class. To get around this in C++,
you ether have to use two dage initidization or lazy-initidizaon. In two-stage
initidization, you add an initialize () method to Customer and make sure tha dl clients of
Cugtomer cdl initialize (). Then you move the creation of archiver to the initidize
method and extract the makeArchiver method. In lazy-initidization, you write a getter
for the archiver fidd and make sure that dl accesses of the archiver go through the getter.
Then you use an internd test to determine whether it istime to creste the archiver.

class Customer
{
protected:
Archiver *archiver;
Archiver *getArchiver() {
if (archiver ==0)
archiver = new FileArchiver(customerPersastenceName);
return archiver;
}
public:
Archiver() : archiver(0) { ... }
};
class TestingCustomer : public Customer
{
protected:
Archiver *getArchiver() {
if (archiver == 0) archiver = new NullArchiver;
return archiver;
}
};

Copyright © 2002, Michael Feathers, All Rights Reserved 9of 12

Subclassing is a great strategy when you need to override the creation of objects, but
what do you do when you have internd dependencies on things that you haven't crested?
These dependencies are affectionatdly known as global variables. From a teding
perspective, it isn't the fact that these variables are globd that is a problem as much as
the fact thet they are variables. Let’sthink about thisin terms of effects.

When we were discovering inflection points, we were trying to find narrow parts of the
design which channel dl of the effects of st of classes. When we put the classes for that
inflection point in a test harness, we have to fathfully set up dl of things those casses
depend upon. Why? Wadl, it isn't just a matter of physica dependencies. The things we
depend upon must act as they would in production code. The problem with globa
vaiables is that prior to any test run, you must provide them with a good known initid
date. Often that requires a lot of tedious work. If you forget to set up paticular
variables, you can easly have tests which bleed state from one execution to another. You
may not be testing what you think you are testing.

In OO systems, global variables often show up as instances of the singleton pettern or just
as datic data in classes. Not dl singletons are on the same footing as globa variables. In
paticular, dngletons which do not affect the functiond behavior of an gpplication
(caches, factories), can behave wdll asinterna dependencies.

Writing Tests

Once we are adle to put the objects of an inflection point in a test, we have to go through
the process of placing some sort of an invariant on the code guarded by the inflection
point.

Remember our key assumption here: code changes behind the inflection point can not
have effect in the sysem without passng through the inflection point. If that is true then
we can dat to write tests for usng the interfaces of the inflection point. In the video
store example, we would write tests against the Customer interface.

How do you find good covering tests? If the interface is narrow enough, you can dart
with boundary vaues to see how the subsystem behaves a the edges Remember that
correctness, at this point in time, is just how he sysem behaves currently. Ancther thing
that you can do is take the code behind the inflection point and start to change it to see
how vaues change a the interface. Often this can give you ideas for additiond tests.
Needless to say, when you do this you should aways be very clear aout where the
golden, ostensibly correct copy of the codeis.

One thing that | haven't done, but I'm eager to try, is automated test generation. Since

the god is smply to characterize the exising behavior of the code and sense when
changes invdidate it, a set of scripts can be used generate sample data. While the cases

Copyright © 2002, Michael Feathers, All Rights Reserved 100of 12

that you generate that way may not be the ones you would like to keep in the system over
its lifetime, they can be used to keep an invariant.

Make Changes

This is programming, pure and smple. Once you have test coverings over the change
aress, you can incrementally make your changes. Take care to run your tests often. Try
writing tests fird, for the changes that you make. After you make changes, add additiona
tests to bolster your work.

Refactor Covered Code

Once you have a test covering in place, you have a wonderful opportunity to clean up
your design. At times it can be had to figure out how to take advantage of it;
paticularly if the code is very poorly sructured. The halmarks of this sort of code are:
large classes with extremely large methods.

The important thing to redlize is that getting the covering in place is the hard work. You
can refactor on demand as you make changes. However, I've discovered that the
refactoring that | do on legacy code tends to follow a little pattern. If | want to dtart to
clarify some covered code, | first gart by doing the extract method [1] refactoring over
and over again. Then, | dart to pay atention the pattern of usage in the class. Are there
groups of methods which use the other methods and data in the class? If there are, | may
have found a place where the class can be split. At that point, | use the extract class [1]
refactoring. Being very sendtive to these patterns of use in dass can make a big
difference,

As you refactor, remember to keep writing tests. Even though test coverings can remain
as part of your test suite, it can be easy to forget they are there, or worse, believe that they
test things that they do not. The best thing that you can do as you refactor is get into the
habit of refactoring into tedts. Refactoring into tests is a little like test first desgn. In the
case of extract method, you look a a large method, imagine a portion you'd like to
extract, write a test for it, then you extract the method to make the test pass. When you
refactor into a test, you are forcing yoursdf to consder dl of the decoupling that you
need to do to write good tests. Once you have the extraction, you can cover it further by
writing more tests,

Conclusion

The drategy that I've outlined works for a wide variety of changes, however there are
some cavedts. Sometimes the only decent inflection point that you can find for a set of
classes is the system boundary. In some applications, the system boundary can be pretty
wide: it encompasses the GUI, cdls to other externd libraries, the database, etc. In those
cases, the best way to get an invariant is to dart writing what Steve McConnell cals
“amoke tests’ againgt the rest of the system [2].

Copyright © 2002, Michael Feathers, All Rights Reserved 11of 12

One promising avenue for Java programmers is the development of Aspectd [3]. With
Aspect], you can write code that will intercept cals in an existing agpplication without
modification. You can use it to log results. Then, when you refactor, you can run again
and see if the new st of reaults differs from the old one. If it does, you've modified
behavior. It'stimeto roll back and start over again.

Another issue that has come up as I've explained inflection points is the question of how
prevaent they are in legacy code Paradoxicdly, I've found that they are often easier to
find in poorly sructured code than in wdl-structured code. In poor code, there isn't a
high degree of internal reuse o it is often pretty easy to find somewhat locaized class
usage. When you dart refactoring code and eiminaing duplication, infection points can
go away. It may seem that we are working at cross purposes, but once unit tests are in
place, scaffolding each class, inflection points don't redly do much for us It is odd, but
it is kind of nice that there is one qudity of poor design that helps us when we want to
improveit!

[1] Fowler, Martin Refactoring: Improving the Design of Existing Code, Addison-Wedey
1999

[2] McConndl, Steve Rapid Development: Taming Wild Software Development
Schedules, Microsoft Press 1996

[3] AspectIwebsite: www.aspectj.org

Copyright © 2002, Michael Feathers, All Rights Reserved 120of 12

